Inosine and equilibrative nucleoside transporter 2 contribute to hypoxic preconditioning in the murine cardiomyocyte HL-1 cell line.

نویسندگان

  • Zlatina Naydenova
  • Jennifer B Rose
  • Imogen R Coe
چکیده

The purine nucleoside adenosine is a physiologically important molecule in the heart. Brief exposure of cardiomyocytes to hypoxic challenge results in the production of extracellular adenosine, which then interacts with adenosine receptors to activate compensatory signaling pathways that lead to cellular resistance to subsequence hypoxic challenge. This phenomenon is known as preconditioning (PC), and, while adenosine is clearly involved, other components of the response are less well understood. Flux of nucleosides, such as adenosine and inosine, across cardiomyocyte membranes is dependent on equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2). We have previously shown in the murine cardiomyocyte HL-1 cell line that hypoxic challenge leads to an increase in intracellular adenosine, which exits the cell via ENT1 and preconditions via A1 and A3 adenosine receptor-dependent mechanisms. However, the role and contribution of inosine and ENT2 are unclear. In this study, we confirmed that ENT1 and ENT2 are both capable of transporting inosine. Moreover, we found that hypoxic challenge leads to a significant increase in levels of intracellular inosine, which exits the cell via both ENT1 and ENT2. Exogenously added inosine (5 microM) preconditions cardiomyocytes in an A1 adenosine receptor-dependent manner since preconditioning can be blocked by the A1 adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 microM) but not the A3 adenosine receptor antagonist MRS-1220 (200 nM). These data suggest that cardiomyocyte responses to hypoxic PC are more complex than previously thought, involving both adenosine and inosine and differing, but overlapping, contributions of the two ENT isoforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection.

To better understand the role of equilibrative nucleoside transporters (ENT) in purine nucleoside-dependent physiology of the cardiovascular system, we investigated whether the ENT1-null mouse heart was cardioprotected in response to ischemia (coronary occlusion for 30 min followed by reperfusion for 2 h). We observed that ENT1-null mouse hearts showed significantly less myocardial infarction c...

متن کامل

Hypoxia regulates the adenosine transporter, mENT1, in the murine cardiomyocyte cell line, HL-1.

OBJECTIVE Adenosine is an important paracrine hormone in the cardiovascular system. Adenosine flux across cardiomyocyte membranes occurs mainly via equilibrative nucleoside transporters (ENTs). The role of the ENTs in adenosine physiology is poorly understood, particularly in response to metabolic stress such as hypoxia. Therefore, we investigated the effects of chronic hypoxia on ENT1, the pre...

متن کامل

Reduced ribavirin antiviral efficacy via nucleoside transporter-mediated drug resistance.

Treatment for hepatitis C virus infection currently consists of pegylated interferon and ribavirin (RBV), a nucleoside analog. Although RBV clearly plays a role in aiding the treatment response, its antiviral mechanism is unclear. Regardless of the specific mechanism of RBV, we hypothesize that differences in levels of cellular uptake of RBV may affect antiviral efficacy and treatment success a...

متن کامل

Substrate and Inhibitor Specificity of the Plasmodium berghei Equilibrative Nucleoside Transporter Type 1.

Malaria is a critical public health issue in the tropical world, causing extensive morbidity and mortality. Infection by unicellular, obligate intracellular Plasmodium parasites causes malaria. The emergence of resistance to current antimalarial drugs necessitates the development of novel therapeutics. A potential novel drug target is the purine import transporter. Because Plasmodium parasites ...

متن کامل

Long term cultured HL-60 cells are intrinsically resistant to Ara-C through high CDA activity.

Cytarabine (araC) is a highly active antimetabolite against hematological malignancy while the agent shows limited activity for some patients despite maintenance or continued therapy with ara-C-containing regiments. In this study, we focused to elucidate the mechanism of intrinsic resistance to araC. The concentration of intracellular ara-CTP and incorporated ara-CTP were monitored in human leu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 294 6  شماره 

صفحات  -

تاریخ انتشار 2008